Deep Learning Similarities from Different
Representations of Source Code

M. Tufano, C. Watson, C. Bavota, M. Di Penta, M. White, D. Poshyvanyk

Source Code

Source Code

Source Code

Plain Text

Abstract Syntax Tree

Control Flow Graph

Bytecode

Source Code

Plain Text (domain)

Abstract Syntax Tree

Control Flow Graph

Bytecode

Source Code

Plain Text (domain)

Abstract Syntax Tree (structure)

Control Flow Graph

Bytecode

Source Code

Plain Text (domain)

Abstract Syntax Tree (structure)

Control Flow Graph (execution)

Bytecode

Source Code

Plain Text (domain)

Abstract Syntax Tree (structure)

Control Flow Graph (execution)

Bytecode (instruction)

“an art of intuitive feature engineering”

REPRESENTATION (or FEATURE) LEARNING

Learn vector representation of Source Code

Different Representations + Feature Learning

~~
0

_—

2

1))
APPROACH

1. Extract multiple representation from code

2. Learn embeddings for each representation

....................

3. Compute similarities

o Rty

B s 4. Assemble a combined model

. 5. Reusability and Transfer Learning

1. Extract multiple representation from code

Identifiers

Abstract Syntax Tree

Control Flow Graph

Bytecode

1. Extract multiple representation from code

Identifiers Extraction
Leaf hodes of the AST
Stream of identifiers and constants in code

Normalization
Replace constant values with their type

e <jint>
e <float>
e <char>

« <string >

1. Extract multiple representation from code

Abstract Syntax Tree

Extraction
Pre-order visit of the AST
Stream of AST Node Types

Normalization

Remove AST node types:
« SimpleName
 QualifiedName

1. Extract multiple representation from code

Extraction
Use Soot to extract CFG

Graph:

 Nodes (statements)
« Directed edges (control flow)

Control Flow Graph

1. Extract multiple representation from code

Bytecode

Extraction

javap -c -private <classname>
Stream of bytecode mnhemonic opcodes
(e.g.,iload, invokevirtual)

Normalization
Remove references to constants
putfield #2 -> putfield

Embedding Learning

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

W1 W) W3 Wy Wg Wg Representation

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

Word embeddings

LoLoL oL

1 2 3 4 5 6 Representation

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

4
Word embeddings

5 Weg Representation

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

Word embeddings

W3 Wy Representation

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

@ Encoding
@ @ Word embeddings

W3 Wy Representation

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

Decoding

Encoding

Word embeddings

Representation

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

Encoding

Word embeddings

Representation

AutoenCODE NN Language Model + Recursive AutoEncoder (RVNN)

!

1

©
©
]

2

]

3

)

4

]

5

)

6

Embedding

Encoding

Word embeddings

Representation

Graph Embedding
High-Order Proximity preserved Embedding

HOPE

Graph Embedding
HOPE High-Order Proximity preserved Embedding

Embeds directed graphs

Graph reconstruction from embedding
Asymmetric transitivity

Katz proximity metric

Graph Embedding
HOPE High-Order Proximity preserved Embedding

Embeds directed graphs

Graph reconstruction from embedding
Asymmetric transitivity

Katz proximity metric

Graph Embedding
HOPE High-Order Proximity preserved Embedding

Embeds directed graphs

Graph reconstruction from embedding
Asymmetric transitivity

Katz proximity metric

BB 45 o h
R

Combined Model

Combined Model

Ensemble Learning (Random Forest)

Clone Detector

Clone Classifier

Experimental Design & Results

RQ1 How effective are different representations in detecting similar code fragments?

Dataset: 10 Java projects from Qualitas.class Corpus
Granularity: Methods and Classes

Extract code representations

Train representation-specific models
Generate embeddings

Compute similarities

Analyze candidates

BN

RQ1 How effective are different representations in detecting similar code fragments?

IDENT AST CFG BYTECODE

—A|d|[|dA|d|d[d|[d]|d|[m || |m (7 |m|[m
—A ||| ||| |HA[A|[HA|HA |||
e I e N B T e T e T e T e T s T s T T B I I I I B B
A |mm|A|mMm|A|MmM|A|m|A|m|A|m|Hd|™|H

RQ1 How effective are different representations in detecting similar code fragments?

Precision %

IDENT AST CFG BYTECODE

A [(HA|A|A ||| (||| [T |
A |dA|dA|dA|mM ||| || || |m|m|™m
S O e I e T T e T e T e O T s T O B T e N I I e B
A |mm|A|m|A|MmM|A|MmM|A|Mm|A|m|H|™m|H

RQ1 How effective are different representations in detecting similar code fragments?

Methods
Representation FP TP Type | Type ll | Type lll | Type IV Precision Recall
IDENT 1 201 151 15 35 0 100 52
AST 11 292 138 132 19 3 96 75
CFG 43 178 69 81 19 9 81 46
BYTE 46 222 89 77 49 7 83 57
Classes
Representation FP TP Type | Type I Type lll | Type IV Precision Recall
IDENT 0 120 23 51 46 0 100 40
AST 18 188 18 121 44 5 91 63
CFG 24 120 7 65 41 7 83 40
BYTE 34 217 23 115 77 2 86 73

RQ2 What is the complementarity of different representations?

Intersection Difference

|TPR1. N TPRJ- | . R\ R |TPR1. \ TPR].|
TPg, UTPg,| " ‘

Y /7 |TPg, UTPg,|

Exclusive

|TPRI \ Ujii TPR_,'

EXC(R;) =
&) | Uj TPR, |

o

RQ2 What is the complementarity of different representations?

Methods

Intersection %

Difference %

Exclusive %

RiNRy Iden AST CFG Byte | Ri\ R, Iden AST CFG Byte | R; EXC(R;)
Iden 40 21 36 | Iden 17 43 29 | Iden 5% (21)
AST 42 44 | AST 43 46 38 | AST 9% (33)
CFG 36 | CFG 36 12 24 | CFG 1% (4)
Byte Byte 35 18 39 Byte 1% (2)
Classes
Intersection % Difference % Exclusive %
RiNRy Iden AST CFG Byte | Ri\ R, Iden AST CFG Byte | R; EXC(R;j)
Iden 33 14 42 | Iden 19 43 8 | Iden 3% (8)
AST 31 51 | AST 48 49 19 | AST 9% (26)
CFG 34 | CFG 43 20 14 | CFG 7% (21)
Byte Byte 49 30 52 Byte 7% (21)

RQ2 What is the complementarity of different representations?

Methods

Intersection %

Difference %

Exclusive %

RiNRy Iden AST CFG Byte | Ri\ R, Iden AST CFG Byte | R; EXC(R;)
Iden 40 21 36 | Iden 17 43 29 |(Iden 5% (21)
AST 42 44 | AST 43 46 38 || AST 9% (33)
CFG 36 | CFG 36 12 24 || CFG 1% (4)
Byte Byte 35 18 39 Byte 1% (2)
Classes
Intersection % Difference % Exclusive %
RiNRy Iden AST CFG Byte | Ri\ R, Iden AST CFG Byte | R; EXC(R;j)
Iden 33 14 42 | Iden 19 43 8 |(Iden 3% (8)
AST 31 51 | AST 48 49 19 || AST 9% (26)
CFG 34 | CFG 43 20 14 |CFG 7% (21)
Byte Byte 49 30 52 Byte 7% (21)

RQ3 How effective are combined multi-representation models?

Ensemble Learning (Random Forest)

Clone Detector

Clone Classifier

Clone Detector

RQ3 How effective are combined multi-representation models?

Methods Classes
Precision Recall F-Measure Precision Recall F-Measure
Clone 98 97 98 90 93 91
Not Clone 90 91 90 61 52 56
Clone Classifier
Methods Classes
Precision Recall F-Measure Precision Recall F-Measure
Not Clone 89 94 91 59 61 60
Type | 89 88 88 86 78 82
Tye Il 82 84 83 81 85 83
Type I 74 75 75 61 59 60
Type IV 67 18 29 0 0 0
Weighted Avg. 84 84 84 67 68 68

Clone Detector

RQ3 How effective are combined multi-representation models?

Methods Classes
Precision Recall F-Measure Precision Recall F-Measure
Clone 98 97 98 90 93 91
Not Clone 90 91 90 61 52 56
Clone Classifier
Methods Classes
Precision Recall F-Measure Precision Recall F-Measure
Not Clone 89 94 91 59 61 60
Type | 89 88 88 86 78 82
Tye Il 82 84 83 81 85 83
Type llI 74 75 75 61 59 60
Type IV 67 18 29 0 0 0
Weighted Avg. 84 84 84 67 68 68

Clone Detector

RQ3 How effective are combined multi-representation models?

Methods Classes
Precision Recall F-Measure Precision Recall F-Measure
Clone 98 97 98 90 93 91
Not Clone 90 91 90 61 52 56
Clone Classifier
Methods Classes
Precision Recall F-Measure Precision Recall F-Measure
Not Clone 89 94 91 59 61 60
Type | 89 88 88 86 78 82
Tye Il 82 84 83 81 85 83
Type I 74 75 75 61 59 60
Type IV 67 18 29 0 0 0
Weighted Avg. 84 84 84 67 68 68

Clone Detector

RQ3 How effective are combined multi-representation models?

Methods Classes
Precision Recall F-Measure Precision Recall F-Measure
Clone 98 97 98 90 93 91
Not Clone 90 91 90 61 52 56
Clone Classifier
Methods Classes
Precision Recall F-Measure Precision Recall F-Measure
Not Clone 89 94 91 59 61 60
Type | 89 88 88 86 78 82
Tye Il 82 84 83 81 85 83
Type I 74 75 75 61 59 60
Type IV 67 18 29 0 0 0
Weighted Avg. 84 84 84 67 68 68

RQ4 Are DL-based models applicable for detecting clones among different projects?

Scenarios:

« Software Maintainer has to analyze the amount of duplicated code across projects
belonging to their organization

« Developer using a jar file (compiled library) needs to asses provenance and/or licensing
issues before releasing the code

Dataset:

* 46 compiled Apache Commons libraries

RQ4 Are DL-based models applicable for detecting clones among different projects?

« Software Maintainer has to analyze the amount of duplicated code across projects
belonging to their organization

= lang3-3.6 - text-1.1

" text-1.1 - collections4-4.1 = Share Duplicated Code
= math3-3.6.1 - rng-1.0

= codec-1.9 - net-3.6

« Developer using a jar file (compiled library) needs to asses provenance and/or licensing
issues before releasing the code

weaver-1.3 imported and shaded:

» collections4-4.1 (373 classes)
» lang3-3.6 (79 classes)

= io-2.5 (13 classes)

RQ5 Can trained DL-based models be reused on different, previously unseen projects?

Model Reusability and Transfer Learning

Limited Vocabulary: AST, Bytecode, CFG

1. Train model on project A

2. Evaluate model on project B
3. Compare the candidates with original model

RQ5 Can trained DL-based models be reused on different, previously unseen projects?

AST model trained on lucene, evaluated on other 9 projects

. Methods % Classes %
Project
Lpelp Lpoe€elp Lpelp Lp€Lp

ant-1.8.2 99 38 73 31
antlr-3.4 100 100 33 100
argouml-0.34 99 96 97 73
hadoop-1.1.2 99 95 95 74
hibernate-4.2.0 89 82 30 84
jhotdraw-7.5.1 99 98 82 77
maven-3.0.5 97 34 50 100
pmd-4.2.5 97 99 99 99
tomcat-7.0.2 98 97 87 69

Overall 97 93 58 90

RQ5 Can trained DL-based models be reused on different, previously unseen projects?

AST model trained on lucene, evaluated on other 9 projects

Project p Met%mds % p Cla\sses %
Lpelp)| Loelp | Lpelp) Lo € Lp

ant-1.8.2 99 88 73 31
antlr-3.4 100 100 33 100
argouml-0.34 99 96 97 73
hadoop-1.1.2 99 95 95 74
hibernate-4.2.0 89 82 30 84
jhotdraw-7.5.1 99 98 82 77
maven-3.0.5 97 34 50 100
pmd-4.2.5 97 99 99 99
tomcat-7.0.2 98 97 87 69
Overall _ 97 Yy, 93 _ 58 Yy, 90

RQ5 Can trained DL-based models be reused on different, previously unseen projects?

AST model trained on lucene, evaluated on other 9 projects

Project Metho;ls % . Class;s % .
Lpelp ([Lo€elp) Lpelp (Lo € Lp
ant-1.8.2 99 88 73 31
antlr-3.4 100 100 33 100
argouml-0.34 99 96 97 73
hadoop-1.1.2 99 95 95 74
hibernate-4.2.0 89 82 30 84
jhotdraw-7.5.1 99 98 82 77
maven-3.0.5 97 34 50 100
pmd-4.2.5 97 99 99 99
tomcat-7.0.2 98 97 87 69
Overall 97 _ 93) 58 _ 90)

Conclusions

Learn from available representations

Conclusions

 Learn from available representations

Combine multiple representations

Conclusions

 Learn from available representations

« Combine multiple representations

Reuse models on different projects

Open Science

Open Science
Data

Deep Learning Code Similarities Home Source Code Datasets Representations RQ1 RQ2 RQ3

Deep Learning Similarities from Different Representations of Source Code

nference on Mining Software Repositories , May 28-29, 2018,

a, Martin White, and Denys Poshyvanyk

Abstract

Assessing the similarity between code components plays a pivotal role in a number of Software Engineering (SE) tasks, such as clone detection, impact analysis, refactoring, etc.
Code similarity is generally measured by relying on manually defined or hand-crafted features (e.g,, by analyzing the overlap among identifiers or comparing the Abstract
Syntax Trees of two code components). These features represent a best guess at what SE researchers can utilize to exploit and reliably assess code similarity for a given task.
Recent work has shown, when using a stream of identifiers to represent the code, that Deep Learning (DL) can effectively replace manual feature engineering for the task of
clone detection. However, source code can be represented at different levels of abstraction: identifiers, Abstract Syntax Trees, Control Flow Graphs, and bytecode. We

https://sites.google.com/view/learningcodesimilarities

Open Science

Source Code

Assessing the similarity between code components plays a pivotal role in a number of Software Engineering (SE) tasks, such as clone detection, impact analysis, refactoring, etc.

Code similarity is generally measured by relying on manually defined or hand-crafted features (e.g, by analyzing the overlap among identifiers or comparing the Abstract
Syntax Trees of two code components). These features represent a best guess at what SE researchers can utilize to exploit and reliably assess code similarity for a given task.
Recent work has shown, when using a stream of identifiers to represent the code, that Deep Learning (DL) can effectively replace manual feature engineering for the task of

clone detection. However, source code can be represented at different levels of abstraction: identifiers, Abstract Syntax Trees, Control Flow Graphs, and bytecode. We

Home Sous R RQ2

Deep Learning Similarities from Different Representations of Source Code

nference on Mining Software Repositories , May 28-29, 2018,

ota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk

Abstract

https://sites.google.com/view/learningcodesimilarities https://github.com/micheletufano/AutoenCODE

Open Science
Source Code

o GitHub

AutoenCODE

Deep Learning Code Similarities Source Code ations RQ1 RQ2 RQ3 RQ4

Deep Learning Similarities from Different Representations of Source Code

ference on Mining Software Repositories , May 28-29, 2018,

ota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk

Abstract

Recent work has shown, when using a stream of identifiers to represent the code, that Deep Le:
clone detection. However, source code can be represented at different levels of abstraction:

Michele Tufano
, @tufanomichele

@ http://www.cs.wm.edu/~mtufano/
\ y

https://sites.google.com/view/learningcodesimilarities https://github.com/micheletufano/AutoenCODE

