
Extract Package Refactoring in ARIES
Fabio Palomba∗, Michele Tufano†, Gabriele Bavota‡, Rocco Oliveto§,

Andrian Marcus¶, Denys Poshyvanyk†, and Andrea De Lucia∗
∗Department of Management & Information Technology, University of Salerno
†Department of Computer Science, The College of William & Mary, VA, USA
‡Center for Applied Software Engineering, Free University of Bolzano-Bozen

§Department of Bioscience and Territory, University of Molise
¶Department of Computer Science, University of Texas

Abstract—Software evolution often leads to the degradation of
software design quality. In Object-Oriented (OO) systems, this
often results in packages that are hard to understand and main-
tain, as they group together heterogeneous classes with unrelated
responsibilities. In such cases, state-of-the-art re-modularization
tools solve the problem by proposing a new organization of the
existing classes into packages. However, as indicated by recent
empirical studies, such approaches require changing thousands of
lines of code to implement the new recommended modularization.
In this demo, we present the implementation of an Extract
Package refactoring approach in ARIES (Automated Refactoring
In EclipSe), a tool supporting refactoring operations in Eclipse.
Unlike state-of-the-art approaches, ARIES automatically iden-
tifies and removes single low-cohesive packages from software
systems, representing very localized design flaws in the package
organization aiming at incrementally improve the overall quality
of the software modularisation.

I. INTRODUCTION

During software maintenance and evolution, changes are
inevitable [1]. A software system evolves in order to be
adapted to new environments and/or requirements. One of the
most important task in this phase concerns the management
of software complexity. In Object-Oriented (OO) software,
packages group together logically and structurally related
classes with the aim of localizing changes, among other things.
Such groupings should be done with care, otherwise they
result in modules that are hard to understand and maintain.
Researchers defined coupling and cohesion as properties of
decomposition units and generally accepted rules state that
modules (i.e., classes and packages in OO software systems)
should have high cohesion and low coupling.

During software evolution the structural design of software
systems changes [1]. Such changes are driven by the processes
(if any) used by the developers, their individual choices, and
by external pressure. In consequence, more often than not, the
software design quality decreases over time. In such cases a
re-modularization of the system is recommended. However,
as recently highlighted by Hall et al. [2], “Big-Bang” re-
modularization (i.e., a complete re-organization of the system’s
classes into packages) is not a viable solution since even for
modest systems, the number of changes required to apply
it is in the order of thousands of lines of code [2]. Thus,
re-modularization efforts need to be localized and aimed at
solving specific design issues.

The Extract Package Refactoring (EPR) can be particularly
useful to avoid “Big-Bang” re-modularization and incremen-
tally improve the overall quality of the system modularisation.
EPR aims at restructuring promiscuous package, i.e., low-
cohesive packages grouping together classes implementing
heterogeneous and unrelated responsibilities, by distributing
some of their responsibilities to new packages, thus reducing
their complexity and improving their cohesion. Performing
EPR operations manually can be very difficult, due to, for
example, the high number of classes contained in a package.

In this demo, we present the implementation of an Ex-
tract Package refactoring approach in ARIES (Automated
Refactoring In EclipSe), a tool supporting refactoring oper-
ations in Eclipse. Specifically, we provided to ARIES func-
tionalities to support both the identification and the removal
of promiscuous packages. The tool is composed by a two-step
wizard. In the first step, ARIES provides to the developer a list
of candidate promiscuous packages to refactor by analyzing
the quality metric profile of the packages of the system under
analysis. In the second step the tool proposes a possible re-
organization of the candidate package. Topic maps are used
to allow developers to better understand the responsibilities
implemented in the promiscuous package and in the proposed
new packages. A video showing ARIES in action is available
on the ARIES website1, where one can also download the tool.

The rest of the paper is organized as follows. Section II
present the tool functionalities, while Section III describes in
details the approach used by ARIES to identify and remove
promiscuous packages. Finally, Section V concludes the paper
highlighting future directions.

II. EXTRACT PACKAGE REFACTORING IN ARIES

ARIES is built on top of the Eclipse Java Development
Toolkit (JDT). The first version of ARIES was presented in
2012 and it supported only Extract Class refactoring [3] oper-
ations. In this demo, we present the implementation in ARIES
of an approach to support another refactoring operation, i.e.,
the EPR. In the next subsections we provide an overview of
how the EPR process works in ARIES, while details about the
approach behind this process are presented in Section III.

1http://www.sesa.unisa.it/tools/aries.jsp



Fig. 1. Identification of Promiscuous Packages in ARIES

A. Identification and Analysis of Promiscuous Packages

ARIES supports the developer in the identification of
promiscuous packages through a quality check of all the pack-
ages in the system under analysis (or of a specified package).
ARIES considers as indicators of package quality the coupling
between each pair of classes in the package, computed by
combining the Information flow-based coupling (ICP) [4]
and the Conceptual Coupling Between Classes (CCBC) [5]
metrics. In particular, a high-quality package should exhibit
high (structural and conceptual) coupling between the classes
present in it (i.e., the classes implement related responsibili-
ties, thus leading to high package cohesion). Thus, packages
containing classes poorly related to each other are identified
by ARIES as candidate for EPR.

To start the quality check, the developer selects from the
Eclipse main menubar the Check Quality of Packages com-
mand. Figure 1 shows ARIES at work in a scenario where
the developer has requested the analysis of the system he is
developing, namely SMOS. SMOS is a software developed
for high schools, which offers a set of functionalities aimed at
simplifying the communications between the school and the
parents of the students.

ARIES shows to the developer a window where, in the
lower part, there is a table with all the promiscuous packages
instances identified by ARIES, while in the upper part, there is
the topic map of the candidate promiscuous package selected
from the list. The topic map is a diagram summarizing the
concepts (through keywords) implemented in the package.

Fig. 2. Refactoring of a Promiscuous Package in ARIES

Such a diagram is particularly useful to provide a visual
indication to the developer on which are the responsibilities
implemented by the package under analysis.

In the scenario depicted in Figure 1, ARIES has
identified a single potentially promiscuous package,
teachingClassroomManagement. The topic map
reveals that in this package there are classes that treat
different concepts, namely, (i) teaching of the school; and (ii)
classrooms. The other topics (keywords) highlighted in the
topic map, i.e., manager, message, and error, represent
common terms of classes that are involved in the managing
the persistence of objects in SMOS.

After the analysis of the topic map, the developer can select
the package and ask ARIES to suggest a new re-organization
of the classes contained in it, by clicking on the Next button
in the lower part of the window.

B. Refactoring Promiscuous Packages

Figure 2 shows the re-modularization proposed by ARIES.
The window is organized in two parts. The upper part contains
the topic map (in the left side) of the promiscuous package
to be refactored and sliders (in the right side) allowing
the developer to set some parameters of the EPR algorithm
implemented by ARIES (see Section II). The lower part of the
window describes the re-modularization proposed by ARIES.
For each package that should be extracted from the promiscu-
ous package, ARIES reports, (i) its topic map; (ii) the set of
classes composing it; and (iii) a text field where the developer
can assign a name to the package to be created. ARIES also
allows the developer to customize the proposed refactoring
by moving the classes between the extracted packages. In
addition, changing the approach parameters is possible to have
a more or less conservative proposed re-modularization, i.e.,
a remodularization with lower or higher number of extracted
packages, respectively.



Fig. 3. Functionality Quality Check in ARIES

In the scenario depicted in Figure 2, ARIES recommends
to split the package teachingClassroomManagement
into two new packages, i.e., a first one grouping together the
classes related to the management of teaching and a second
one related to the management of classrooms. This information
can be easily derived by the software engineer by analyzing
the topic maps of the recommended packages. To further
check the quality improvement of the proposed refactoring,
the developer can use the Quality Check feature implemented
in ARIES (see Figure 3). Specifically, ARIES highlights the
average values of the ICP and CCBC metrics for the pairs of
classes contained in the new packages (green dots in Figure 3)
and for the original promiscuous package (red dot in Figure
3) on boxplots reporting the distribution of such metrics for
all the packages in the system. In this way the developer can
analyze the quality of the new packages as compared to (i)
the quality of the original promiscuous package, and (ii) the
overall quality of all the packages in the system.

To terminate the extraction process and automatically gen-
erate the new packages, the developer can click the Finish
button (right lower corner in Figure 2). ARIES will generate
the new packages making sure that the changes made by the
refactoring do not introduce any syntactic error.

III. TOOL ARCHITECTURE

Figure 4 shows the architecture of ARIES. The Presentation
layer contains the classes implementing the GUI of ARIES,
exploiting the SWT tools provided by the Eclipse API. All
GUIs presented in the previous section are part of this layer.

The Application logic layer is the core of ARIES and it
contains all the subsystems implementing the identification
of design problems and the recommendation of refactoring
operations. The Extract Class Refactoring (ECR) subsystem
is not detailed in this demo, since we presented it in the first
version of ARIES [3]. Our focus is on the EPR subsystem,
which is new in ARIES. It includes two main components: the
Promiscuous packages detector and the EPR recommender.

Promiscuous packages detector. This subsystem is in
charge of providing the developer with indications on where

GUI org.eclipse.ui

Presentation layer

ECR
subsystem org.eclipse.jtd

Application logic layer

Topic map 
manager

EPR subsystem

Promiscuous 
packages detector

EPR
recommender

Fig. 4. ARIES Architecture

in her system promiscuous packages lie. As previously men-
tioned, the detection of promiscuous packages is based on
the analysis of two quality metrics, i.e., the ICP [4] and the
CCBC [5]. These two metrics capture the coupling between
a pair of classes (Ci, Cj) from a structural (ICP) and a
conceptual (CCBC) point of view. In particular, the ICP
between two classes Ci and Cj is measured as the number
of method invocations in the class Ci to methods in the class
Cj , weighted by the number of parameters of the invoked
methods. CCBC is instead based on the conceptual information
(i.e., textual information) captured in the code by comments
and identifiers. Two classes are conceptually related if their
(domain) semantics are similar, that is, they have high textual
similarity. Higher CCBC values indicate higher coupling.
Since both metrics are defined between zero and one, ARIES
combines them in a composite coupling metric defined as:

coupling(Ci, Cj) =
ICP (Ci, Cj) + CCBC(Ci, Cj)

2

Then, it computes the cohesion of each package as the average
coupling between all pairs of classes contained in it. In-
deed, highly cohesive packages should contain highly coupled
classes (i.e., classes implementing similar responsibilities).
Thus, packages having low level of such quality metrics are
identified by ARIES as packages needing restructuring. Once
ARIES measures the cohesion of all packages in the system, it
highlights those having a cohesion lower than the first quartile
of this distribution, as candidates to be “promiscuous”.

EPR recommender. This subsystem is in charge of pro-
viding suggestions about possible re-modularizations of a
package, previously identified as promiscuous. It implements



the approach defined by Bavota et al. [6]. This approach
takes as input a package identified as a candidate for re-
modularization. The package is parsed to build a class-by-
class matrix, that is a n×n matrix, where n is the number of
classes in the package. An entry ci,j in the matrix represent
the probability that classes Ci and Cj should stay in the
same package. The value of the entry is computed using a
hybrid coupling measure obtained through a weighted average
of the two metrics described above (i.e., ICP and CCBC).
Once the class-by-class matrix is built, its transitive closure is
computed to extract chains of strongly related classes. Each
chain represents a new package containing classes having
similar responsibilities (i.e., highly coupled classes) and that
should be in the same package after the refactoring process.
However, in the class-by-class matrix there could be very
few zero values, due to spurious (but light) structural and/or
conceptual relationships between classes [7]. Thus, a transitive
closure may include almost all the classes in a single chain. To
avoid such a problem and to identify the strongest relationships
between classes, the class-by-class matrix is filtered based on
a coupling threshold named minCoupling. All values lower
than minCoupling are converted to zero. A possible side
effect of this step is the extraction of short (trivial) chains.
In order to avoid the extraction of trivial packages, with a
very low number of classes in them, the algorithm uses a
minLength threshold to ensure that the extracted chains contain
at least minLength classes. Each extracted chain, containing
a number of classes lower than minLength, is merged with
the most similar non trivial chain. This parameter, as all the
others parameters in the approach by Bavota et al. [6] (e.g.,
minCoupling and the weights used when merging the ICP and
the CCBC metrics) are customizable in ARIES (see Figure 2).

Note that, if the output of the EPR algorithm is a single
chain, then no re-modularization is suggested by the tool.
Indeed, this usually happens when the cohesion of the package
is very high and it does not need any re-modularization.
Otherwise, if the refactoring is accepted by the developer, then
ARIES performs the refactoring, modifying the source code
as needed to avoid syntactical errors.

Topic Map Manager. This subsystem allows to build the
topic map for a generic package P by analyzing the term
frequencies in the classes it contains. In particular, given a
package P , ARIES extracts all the terms in its classes and
exploits a stop-word list to prune out common English words
and Java keywords2. Then, the five most popular terms (i.e.,
those present in the highest number of classes) are used
to construct the topic map of P that, for this reason, is
represented by a pentagon where each vertex represents one
of the main topics. Each vertex is connected to the center
of the pentagon by an axis representing the percentage of
classes in P that implements the corresponding topic. The
graphical representation of the main topics of P is then
obtained by tracing lines between the percentage points on
each of the five axes, indicating the percentage of classes

2The employed stop-word list can be customized in ARIES.

belonging to P that implement the corresponding topic. The
topic map provided for the promiscuous package is meant to
help the developer in understanding which are the different
responsibilities implemented in the package. Clearly not all
topic maps will be equally helpful, as they depend on the
meaningfulness of identifiers and comments in the code.

IV. EVALUATION

The EPR approach implemented by ARIES has been empir-
ically evaluated in a study involving 16 Master students who
analyzed refactoring operations suggested by the approach
in order to understand (i) if the extracted packages have a
higher quality than the original (promiscuous) one; and (ii)
if the extracted packages are meaningful from a functional
point of view [6]. The results of the evaluation indicate that
the decomposed packages have better cohesion without a
deterioration of coupling and the re-modularization proposed
by the tool are meaningful from a functional point of view.

V. DEMO REMARKS

In this demo we presented the Extract Package Refactoring
feature of ARIES, a tool that supports developers in the
identification of packages that need to be re-organized and
the consequent resolution of the design problem through the
application of refactoring operations. As future work, we
plan to (i) extend the functionalities of the tool to support
other refactoring operations, such as, Move Class refactoring;
and (ii) implement a more sophisticated approach to detect
packages that need to be refactored.

REFERENCES

[1] M. M. Lehman, “On understanding laws, evolution, and conservation
in the large-program life cycle,” J. Syst. Softw., vol. 1, pp. 213–221,
Sep. 1984. [Online]. Available: http://dx.doi.org/10.1016/0164-1212(79)
90022-0

[2] M. Hall, M. Khojaye, N. Walkinshaw, and P. McMinn, “Establishing the
source code disruption caused by automated remodularization tools,” in
Software Maintenance and Evolution, 2014. ICSME ’14. 30th Interna-
tional Conference on, 2014.

[3] G. Bavota, A. D. Lucia, A. Marcus, R. Oliveto, and F. Palomba,
“Supporting extract class refactoring in eclipse: The ARIES project,” in
34th International Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland, 2012, pp. 1419–1422.

[4] Y. S. Lee and B. S. Liang, “Measuring the coupling and cohesion of an
object-oriented program based on information flow,” in Software Quality,
1995.

[5] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using infor-
mation retrieval based coupling measures for impact analysis,” Empirical
Software Engineering, vol. 14, no. 1, pp. 5–32, 2009.

[6] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using structural
and semantic measures to improve software modularization,” Journal of
Empirical Software Engineering (EMSE), pp. 901–932, 2013. [Online].
Available: http://dx.doi.org/10.1016/0164-1212(79)90022-0

[7] G. Canfora, J. Czeranski, and R. Koschke, “Revisiting the delta ic
approach to component recovery,” in Reverse Engineering, 2000. Pro-
ceedings. Seventh Working Conference on, 2000, pp. 140–149.


