
An Empirical Investigation into Learning Bug-Fixing Patches
in the Wild via Neural Machine Translation

Michele Tufano
College of William and Mary

Williamsburg, VA, USA

Cody Watson
College of William and Mary

Williamsburg, VA, USA

Gabriele Bavota
Università della Svizzera italiana (USI)

Lugano, Switzerland

Massimiliano Di Penta
University of Sannio
Benevento, Italy

Martin White
College of William and Mary

Williamsburg, VA, USA

Denys Poshyvanyk
College of William and Mary

Williamsburg, VA, USA

ABSTRACT
Millions of open-source projects with numerous bug fixes are avail-
able in code repositories. This proliferation of software development
histories can be leveraged to learn how to fix common program-
ming bugs. To explore such a potential, we perform an empirical
study to assess the feasibility of using Neural Machine Translation
techniques for learning bug-fixing patches for real defects. We mine
millions of bug-fixes from the change histories of GitHub reposi-
tories to extract meaningful examples of such bug-fixes. Then, we
abstract the buggy and corresponding fixed code, and use them to
train an Encoder-Decoder model able to translate buggy code into
its fixed version. Our model is able to fix hundreds of unique buggy
methods in the wild. Overall, this model is capable of predicting
fixed patches generated by developers in 9% of the cases.

CCS CONCEPTS
• Software and its engineering→ Software maintenance tools;

KEYWORDS
neural machine translation, bug-fixes
ACM Reference Format:
Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
MartinWhite, and Denys Poshyvanyk. 2018. An Empirical Investigation into
Learning Bug-Fixing Patches in theWild via Neural Machine Translation. In
Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE ’18), September 3–7, 2018, Montpellier, France.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3238147.3240732

1 INTRODUCTION
Localizing and fixing bugs is known to be an effort-prone and time-
consuming task for software developers [15, 30, 38]. To support
programmers in this activity, researchers have proposed a number
of approaches aimed at automatically repairing programs. The
proposed techniques either use a generate-and-validate approach,
which consists of generating many repairs (e.g., through Genetic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240732

Programming like GenProg [23, 37]), or an approach that produces
a single fix [14, 27]. While automated program repair techniques
still face many challenges to be applied in practice, existing work
has made strides to be effective in specific cases. These approaches,
given the right circumstances, substantially contribute in reducing
the cost of bug-fixes for developers [21, 26].

Two major problems automated repair approaches have are pro-
ducing patches acceptable for programmers and, especially for
generate-and-validate techniques, over-fitting patches to test cases.
To cope with this problem, Le et al. [20] leverage the past history
of existing projects — in terms of bug-fix patches — and compare
automatically-generated patches with existing ones. Patches that
are similar to the ones found in the past history of mined projects
are considered to be more relevant. Another approach that iden-
tifies patches from past fixes is Prophet [24], which after having
localized the likely faulty code by running test cases, generates
patches from correct code using a probabilistic model.

Our work is motivated by the following three considerations.
First, automated repair approaches are based on a relatively limited
and manually-crafted (with substantial effort and expertise) set of
transformations or fixing patterns. Second, the work done by Le
et al. [20] shows that the past history of existing projects can be
successfully leveraged to understand what a “meaningful" program
repair patch is. Third, several works have recently demonstrated the
capability of advanced machine learning techniques, such as deep
learning, to learn from large software engineering (SE) datasets.
Some examples of recent models that can be used in a number of
SE tasks include: code completion [29], defect prediction [36], bug
localization [19], clone detection [39], code search [11], learning
API sequences [12], or recommending method names [2].

Forges like GitHub provide a plethora of change history and
bug-fixing commits from a large number of software projects. A
machine-learning based approach can leverage this data to learn
about bug-fixing activities in the wild. In this work, we evaluate the
suitability of a Neural-Machine Translation (NMT)-based approach
for the task of automatically generating patches for buggy code.

Automatically learning from bug-fixes in the wild provides the
ability to emulate real patches written by developers. Additionally,
we harness the power of NMT to “translate” buggy code into fixed
code thereby emulating the combination of AST operations per-
formed in the developer written patches. Further benefits include
the static nature of NMT when identifying candidate patches, since,
unlike some generate-and-validate approaches, we do not need to
execute test cases during patch generation [31, 40].

831

https://doi.org/10.1145/3238147.3240732
https://doi.org/10.1145/3238147.3240732

ASE ’18, September 3–7, 2018, Montpellier, France M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, D. Poshyvanyk

We start by mining a large set of (∼ 787k) bug-fixing commits
from GitHub. From these commits, we extract method-level AST
edit operations using fine-grained source code differencing [7]. We
identify multiple method-level differences per bug-fixing commit
and independently consider each one, yielding to ∼ 2.3M bug-fix
pairs (BFPs). After that, the code of the BFPs is abstracted to make
it more suitable for the NMT model. Finally, an encoder-decoder
model is used to understand how the buggy code is transformed into
fixed code. Once the model has been trained, it is used to generate
patches for unseen code.

We empirically investigate the potential of NMT to generate
candidate patches that are identical to the ones implemented by
developers. The results indicate that trained NMT model is able to
successfully predict the fixed code, given the buggy code, in 9% of
the cases.

2 APPROACH
Fig. 1 shows an overview of the NMT approach that we experiment
with. The black boxes represent the main phases, the arrows in-
dicate data flows, and the dashed arrows denote dependencies on
external tools or data. We mine bug-fixing commits from thousands
of GitHub repos using GitHub Archive [10] (Sec. 2.1). From the
bug-fixes, we extract method-level pairs of buggy and correspond-
ing fixed code named bug-fix pairs (BFPs) (Sec. 2.2.1). BFPs are the
examples that we use to learn how to fix code from bug-fixes (buggy
→ f ixed). We use GumTree [7] to identify the list of edit actions
(A) performed between the buggy and fixed code. Then, we use
a Java Lexer and Parser to abstract the source code of the BFPs
(Sec. 2.2.2) into a representation better suited for learning. During
the abstraction, we keep frequent identifiers and literals we call
idioms within the representation. The output of this phase are the
abstracted BFPs and their corresponding mappingM , which allows
reconstructing the original source code. Next, we filter out long
methods (Sec. 2.2.3) and we use the obtained set to train an encoder-
decoder model able to learn how to transform a buggy code into
a corresponding fixed version (Sec. 2.3). The trained model can be
used to generate a patch for unseen buggy code.

2.1 Bug-Fixes Mining
We downloaded from GitHub Archive [10] every public GitHub
event between March 2011 and October 2017 and we used the
Google BigQuery APIs to identify all commits having a message
containing the patterns [8]: (“fix” or “solve”) and (“bug” or “issue” or
“problem” or “error”). We identified ∼10M (10,056,052) bug-fixing
commits. As the content of commit messages and issue trackers
might imprecisely identify bug-fixing commits, two authors in-
dependently analyzed a statistically significant sample (95% con-
fidence level ±5% confidence interval, for a total size of 384) of
identified commits to check whether they were actually bug fixes.
After solving 13 cases of disagreement, they concluded that 97.6% of
the identified bug-fixing commits were true positive. Details about
this evaluation are in our online appendix [34].

For each bug-fixing commit, we extracted the source code before
and after the bug-fix using the GitHub Compare API [9]. This
allowed us to collect the buggy (pre-commit) and the fixed (post-
commit) code. We discarded commits related to non-Java files, as

well as files that were created in the bug-fixing commit, since there
would be no buggy version to learn from. Moreover, we discarded
commits impacting more than five Java files, since we aim to learn
focused bug-fixes that are not spread across the system. The result
of this process was the buggy and fixed code of 787,178 bug-fixing
commits.

2.2 Bug-Fix Pairs Analysis
A BFP (Bug-Fixing Pair) is a pair (mb ,mf) wheremb represents
a buggy code component and mf represents the corresponding
fixed code. We will use these BFPs to train the NMT model, make it
learning the translation from buggy (mb) to fixed (mf) code, thus
being able of generating patches.

2.2.1 Extraction. Given (fb , ff) a pair of buggy and fixed file from
a bug-fix bf, we used the GumTree Spoon AST Diff [7] tool to
compute the AST differencing between fb and ff . This computes
the sequence of edit actions performed at the AST level that allows
to transform the fb ’s AST into the ff ’s AST.

Since the file-level granularity could be too large to learn pat-
terns of transformation, we separate the code into method-level
fragments that will constitute our BFPs. The rationale for choosing
method-level BFPs is supported by several reasons. First, methods
represent a reasonable target for fixing activities, since they are
likely to implement a single task or functionality. Second, meth-
ods provide enough meaningful context for learning fixes, such as
variables, parameters, and method calls used in the method. This
choice is justified by recent empirical studies, which indicated how
the large majority of fixing patches consist of single line, single
churn or, worst cases, churns separated by a single line [32]. Smaller
snippets of code lack the necessary context and, hence, they could
not be considered. Finally, considering arbitrarily long snippets of
code, such as hunks in diffs, makes learning more difficult given
the variability in size and context [1, 18].

We first rely on GumTree to establish the mapping between the
nodes of fb and ff . Then, we extract the list of mapped pairs of
methods L = {(m1b ,m1f), . . . , (mnb ,mnf)}. Each pair (mib ,mi f)
contains the methodmib (from the buggy file fb) and the corre-
sponding methodmi f (from the fixed file ff). Next, for each pair
of mapped methods, we extract a sequence of edit actions using the
GumTree algorithm. We then consider only those method pairs for
which there is at least one edit action (i.e., we disregard methods
that have not been modified during the fix). Therefore, the output of
this phase is a list of BFPs = {b f p1, . . . ,b f pk }, where each BFP is
a triplet b f p = {mb ,mf ,A}, wheremb is the buggy method,mf is
the corresponding fixed method, andA is a sequence of edit actions
that transforms mb in mf . We exclude methods created/deleted
during the fixing, since we cannot learn fixing operations from
them. Overall, we extracted ∼2.3M BFPs.

It should be noted that the process we use to extract the BFPs:
(i) does not capture changes performed outside methods (e.g., class
signature, attributes, etc.), and (ii) considers each BFP as an inde-
pendent bug fix, meaning that multiple methods modified in the
same bug fixing activity are considered independently from one
another.

832

An Empirical Investigation into Learning Bug-Fixing Patches in the Wild via NMT ASE ’18, September 3–7, 2018, Montpellier, France

Recurrent Neural Network (RNN) Encoder-Decoder

h1 h2 hn

RNN Cell
(GRU)

x1 x2 <end> <start> y1 ym

ci

s1 s2 sm

RNN Cell
(GRU)

[ci, si]

Softmax

abstractf abstractb

Encoder RNN Attention Decoder RNN

..

..

..

..

..

..

787k
bug-fixes

bug-fixes
mining

GitHubArchive
buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

GumTree ~

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

edit actions (A)
Delete Literal at If
Insert Literal at If

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

edit actions (A)
Delete Literal at If
Insert Literal at If

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

edit actions (A)

Update Literal at If

2.3M
bug-fix pairs

abstraction

ANTLR
(lexer) #

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

edit actions (A)
Delete Literal at If
Insert Literal at If

VAR_2 -> tmp
METHOD_1 -> isValid()

mapping (M)

buggy code

fixed code

public MyList checkList(MyList l){
 if(l.size() < 0){
 populateList(l);
 }
 return l;
}

public MyList checkList(MyList l){
 if(l.size() < 1){
 populateList(l);
 }
 return l;
}

edit actions (A)
Delete Literal at If
Insert Literal at If

VAR_2 -> tmp
METHOD_1 -> isValid()

mapping (M)

abstract buggy code

abstract fixed code

public TYPE_1 METHOD_1 (TYPE_1 VAR_1) { if
(VAR_1 . size () < 0) { METHOD_2 (VAR_1) ; } return VAR_1 ; }

public TYPE_1 METHOD_1 (TYPE_1 VAR_1) { if
(VAR_1 . size () < 1) { METHOD_2 (VAR_1) ; } return VAR_1 ; }

edit actions (A)
Update Literal at If

VAR_1 -> l
METHOD_1 -> checkList

mapping (M)

2.3M abstract
bug-fix pairs

JavaParser
(parser) <>

Recurrent Neural Network (RNN) Encoder-Decoder

h1 h2 hn

RNN Cell
(GRU)

x1 x2 <end> <start> y1 ym

ci

s1 s2 sm

RNN Cell
(GRU)

[ci, si]

Softmax

abstractb (buggy) abstractf (fixed)

Encoder RNN Attention Decoder RNN

..

..

..

..

..

..1 2 3 4 5 6

Idioms
i
j
0
1

size
…

transformation
pairs analysis

datasets

Sm
al

l b
ug

-fi
x

pa
irs

7

Figure 1: Overview of the process used to experiment with an NMT-based approach.

2.2.2 Abstraction. Learning bug-fixing patterns is extremely chal-
lenging byworking at the level of raw source code. This is especially
due to the huge vocabulary of terms used in the identifiers and
literals of the ∼2M mined projects. Such a large vocabulary would
hinder our goal of learning transformations of code as a neural
machine translation task. For this reason, we abstract the code and
generate an expressive yet vocabulary-limited representation. We
use a Java lexer and a parser to represent each buggy and fixed
method within a BFP as a stream of tokens. The lexer, built on top
of ANTLR [28], tokenizes the raw code into a stream of tokens, that
is then fed into a Java parser [35], which discerns the role of each
identifier (i.e., whether it represents a variable, method, or type
name) and the type of a literal.

Each BFP is abstracted in isolation. Given a BFP b f p =

{mb ,mf ,A}, we first consider the source code ofmb . The source
code is fed to a Java lexer, producing the stream of tokens. The
stream of tokens is then fed to a Java parser, which recognizes
the identifiers and literals in the stream. The parser generates and
substitutes a unique ID for each identifier/literal within the tok-
enized stream. If an identifier or literal appears multiple times in
the stream, it will be replaced with the same ID. The mapping of
identifiers/literals with their corresponding IDs is saved in a map
(M). The final output of the Java parser is the abstracted method
(abstractb). Then, we consider the source code of mf . The Java
lexer produces a stream of tokens, which is then fed to the parser.
The parser continues to use a map M when abstractingmf . The
parser generates new IDs only for novel identifiers/literals, not
already contained inM , meaning, they exist inmf but not inmb .
Then, it replaces all the identifiers/literals with the corresponding
IDs, generating the abstracted method (abstractf). The abstracted
BFP is now a 4-tuple b f pa = {abstractb ,abstractf ,A,M}, where
M is the ID mapping for that particular BFP. The process continues
considering the next BFP, generating a new mappingM . Note that
we first analyze the buggy codemb and then the corresponding
fixed codemf of a BFP, since this is the direction of the learning
process.

IDs are assigned to identifiers and literals in a sequential and
positional fashion: The first method name found will be assigned
the ID of METHOD_1, likewise the second method name will receive
the ID of METHOD_2. This process continues for all the method and
variable names (VAR_X) as well as the literals (STRING_X, INT_X,
FLOAT_X).

At this point, abstractb and abstractf of a BFP are a stream of to-
kens consisting of language keywords (e.g., for, if), separators (e.g.,
“(”, “;”, “}”) and IDs representing identifiers and literals. Comments
and annotations have been removed from the code representation.

Some identifiers and literals appear so often in the code that,
for the purpose of our abstraction, they can almost be treated as
keywords of the language. This is the case for the variables i, j, or
index, that are often used in loops, or for literals such as 0, 1, -1,
often used in conditional statements and return values. Similarly,
method names, such as size or add, appear several times in our
code base, since they represent common concepts. These identifiers
and literals are often referred to as “idioms” [5]. We include idioms
in our representation and do not replace idioms with a generated
ID, but rather keep the original text when abstracting the code.

To define the list of idioms, we first randomly sampled 300k BFPs
and considered all their original source code. Then, we extracted
the frequency of each identifier/literal used in the code, discarding
keywords, separators, and comments. Next, we analyzed the distri-
bution of the frequencies and focused on the top 0.005% frequent
words (outliers of the distribution). Two authors manually analyzed
this list and curated a set of 272 idioms also including standard Java
types such as String, Integer, common Exceptions, etc. The list
of idioms is available in the online appendix [34].

This representation provides enough context and information
to effectively learn code transformations, while keeping a limited
vocabulary (|V | = ∼430). The abstracted code can be mapped back
to the real source code using the mapping (M).

buggy code fixed code

bug-fix

abstracted buggy code abstracted fixed code

abstracted buggy code with idioms abstracted fixed code with idioms
learning

public Integer getMinElement(List myList) {
 if(myList.size() >= 0) {
 return ListManager.getFirst(myList);
 }
 return 0;
}

public Integer getMinElement(List myList) {
 if(myList.size() >= 1) {
 return ListManager.min(myList);
 }
 return null;
}

public TYPE_1 METHOD_1 (TYPE_2 VAR_1)
{ if (VAR_1 . METHOD_2 () >= INT_1)
{ return TYPE_3 . METHOD_3 (VAR_1) ; }
return INT_1 ; }

public TYPE_1 METHOD_1 (List VAR_1)
{ if (VAR_1 . size () >= 0)
{ return TYPE_2 . METHOD_3 (VAR_1) ; }
return 0 ; }

public TYPE_1 METHOD_1 (TYPE_2 VAR_1)
{ if (VAR_1 . METHOD_2 () >= INT_2)
{ return TYPE_3 . METHOD_4 (VAR_1) ; }
return null ; }

public TYPE_1 METHOD_1 (List VAR_1)
{ if (VAR_1 . size () >= 1)
{ return TYPE_2 . min (VAR_1) ; }
return null ; }

Figure 2: Code Abstraction Example.

To better understand our representation, let us consider the
example in Fig. 2, where we see a bug-fix related to finding the
minimum value in a list of integers. The buggy method contains
three errors, which the fixed code rectifies. The first bug is within

833

ASE ’18, September 3–7, 2018, Montpellier, France M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, D. Poshyvanyk

the if-condition, where the buggy method checks if the list size is
greater than or equal to 0. This is problematic since a list without
any values cannot have a minimum value to return. The second bug
is in the method call getFirst, this will return the first element in
the list, which may or may not be the minimum value. Lastly, if the
if-condition fails in the buggy method then the method returns 0;
returning 0when theminimum is unable to be identified is incorrect
as it indicates that one of the elements within the list is 0. The fixed
code changes the if-condition to compare against a list size of 1
rather than 0, uses the min method to return the minimum value
and changes the return value to null when the if-condition fails.

Using the buggy and fixed code for training, although a viable
and realistic bug-fix, presents some issues. When we feed the buggy
piece of code to the Java Parser and Lexer, we identify some prob-
lems with the mapping. For example, the abstracted fixed code
contains INT_2 and METHOD_4, which are not contained in the ab-
stracted version of the buggy code or its mapping. Since the map-
ping of tokens to code is solely reliant on the buggy method, this
example would require the synthesis of new values for INT_2 and
METHOD_4. However, the methodology takes advantage of idioms,
allowing to still consider this BFP. When using the abstraction with
idioms, we are able to replace tokens with the values they represent.
Now, when looking at the abstracted code with idioms for both
buggy and fixed code, there are no abstract tokens found in the
fixed code that are not in the buggy code. Previously, we needed
to synthesize values for INT_2 and METHOD_4, however, INT_2 was
replaced with idiom 1 and METHOD_4 with idiom min. With the use
of idioms, we are capable of keeping this BFP while maintaining
the integrity of learning real, developer inspired patches.

2.2.3 Filtering. We filter out BFPs that: (i) contain lexical or syn-
tactic errors (i.e., either the lexer or parser fails to process them) in
either the buggy or fixed code; (ii) their buggy and fixed abstracted
code (abstractb , abstractf) resulted in equal strings; (iii) performed
more than 100 atomic AST actions (|A| > 100) between the buggy
and fixed version. The rationale behind the latter decision was to
eliminate outliers of the distribution (the 3rd quartile of the dis-
tribution is 14 actions), which could hinder the learning process.
Moreover, we do not aim to learn such large bug-fixing patches.

Next, we filter the BFPs based on their size, measured in the
number of tokens. We decided to disregard long methods (longer
than 50 tokens) and focused on small size BFPs.We, therefore, create
the dataset BFPsmall = {b f p ≤ 50}.

2.2.4 Synthesis of Identifiers and Literals. BFPs are the examples
we use to make our model learn how to fix source code. Given a
b f p = {mb ,mf ,A}, we first abstract its code, obtaining b f pa =
{abstractb ,abstractf ,A,M}. The buggy code abstractb is used as
input to the model, which is trained to output the corresponding
fixed code abstractf . This output can then be mapped back to real
source code usingM .

In the real usage scenario, when the model is deployed, we do
not have access to the oracle (i.e., fixed code, abstractf), but only to
the input code. This source code can then be abstracted and fed to
the model, which generates as output a predicted code (abstractp).
The IDs that the abstractp contains can be mapped back to real
values only if they also appear in the input code. If the fixed code
suggests to introduce a method call, METHOD_6, which is not found

in the input code, we cannot automatically map METHOD_6 to an
actual method name. This inability to map back source code exists
for any newly created ID generated for identifiers or literals, which
are absent in the input code.

Therefore, it appears that the abstraction process, which allows
us to limit the vocabulary size and facilitate the training process,
confines us to only learning fixes that re-arrange keywords, iden-
tifiers, and literals already available in the context of the buggy
method. This is the primary reason we decided to incorporate id-
ioms in our code representation, and treat them as keywords of
the language. Idioms help retaining BFPs that otherwise would be
discarded because of the inability to synthesize new identifiers or
literals. This allows the model to learn how to replace an abstract
identifier/literal with an idiom or an idiom with another idiom (e.g.,
bottom part of Fig. 2).

After these filtering phases, the datasets BFPsmall is comprised
of 58k (58,350) bug-fixes.

2.3 Learning Patches
2.3.1 Dataset Preparation. Given a set of BFPs (i.e., BFPsmall)
we use the instances to train an Encoder-Decoder model. Given
a b f pa = {abstractb ,abstractf ,A,M} we use only the pair
(abstractb ,abstractf) of buggy and fixed abstracted code for learn-
ing. No additional information about the possible fixing actions (A)
is provided during the learning process to the model. The given
set of BFPs is randomly partitioned into: training (80%), validation
(10%), and test (10%) sets. Before the partitioning, we make sure to
remove any duplicated pairs (abstractf ,abstractb) to not bias the
results, i.e., same pair both in training and test set.

2.3.2 NMT. The experimented model is based on an RNN Encoder-
Decoder architecture, commonly adopted in NMT [6, 17, 33]. This
model consists of two major components: an RNN Encoder, which
encodes a sequence of terms x into a vector representation, and
an RNN Decoder, which decodes the representation into another
sequence of terms y. The model learns a conditional distribution
over a (output) sequence conditioned on another (input) sequence
of terms: P(y1, ..,ym |x1, ..,xn), where n andm may differ. In our
case, given an input sequence x = abstractb = (x1, ..,xn) and a tar-
get sequence y = abstractf = (y1, ..,ym), the model is trained
to learn the conditional distribution: P(abstractf |abstractb) =
P(y1, ..,ym |x1, ..,xn), where xi and yj are abstracted source tokens:
Java keywords, separators, IDs, and idioms. Fig. 1 shows the archi-
tecture of the Encoder-Decoder model with attention mechanism
[3, 4, 25]. The Encoder takes as input a sequence x = (x1, ..,xn)
and produces a sequence of states h = (h1, ..,hn). We rely on a
bi-directional RNN Encoder [3], which is formed by a backward
and a forward RNN, which are able to create representations taking
into account both past and future inputs [4]. That is, each state hi
represents the concatenation (dashed box in Fig. 1) of the states
produced by the two RNNs when reading the sequence in a forward
and backward fashion: hi = [

−→
hi ;
←−
hi].

The RNN Decoder predicts the probability of a target sequence
y = (y1, ..,ym) given h. Specifically, the probability of each out-
put term yi is computed based on: (i) the recurrent state si in the
Decoder; (ii) the previous i − 1 terms (y1, ..,yi−1); and (iii) a con-
text vector ci . The latter constitutes the attention mechanism. The

834

An Empirical Investigation into Learning Bug-Fixing Patches in the Wild via NMT ASE ’18, September 3–7, 2018, Montpellier, France

vector ci is computed as a weighted average of the states in h:
ci =

∑n
t=1 aitht where the weights ait allow the model to pay

more attention to different parts of the input sequence. Specifically,
the weight ait defines how much the term xi should be taken into
account when predicting the target term yt .

The entire model is trained end-to-end (Encoder and Decoder
jointly) by minimizing the negative log likelihood of the target
terms, using stochastic gradient descent.

2.3.3 Hyperparameter Search. For the model built on the BFPsmall
dataset (i.e.,Msmall) we performed hyperparameter search by test-
ing ten configurations of the encoder-decoder architecture. The
configurations tested different combinations of RNN Cells (LSTM
[13] and GRU [6]), number of layers (1, 2, 4) and units (256, 512)
for the encoder/decoder, and the embedding size (256, 512). Bucket-
ing and padding was used to deal with the variable length of the
sequences. We trained our models for a maximum of 60k epochs,
and selected the model’s checkpoint before over-fitting the training
data. To guide the selection of the best configuration, we used the
loss function computed on the validation set (not on the test set),
while the results are computed on the test set. All data are available
in our online appendix [34].

3 EXPERIMENTAL DESIGN
The goal of this study is to empirically assess whether NMT can
be used to learn fixes in the wild. The context consists of a dataset
of bug fixes (Sec. Section 2) and aims at answering the following
research question.

3.1 RQ: Is Neural Machine Translation a viable
approach to learn how to fix code?

We aim to empirically assessing whether NMT is a viable approach
to learn transformations of the code from a buggy to a fixed state.
To this end, we use the dataset BFPsmall to train and evaluate
the NMT model Msmall . Precisely, given a BFP dataset, we train
different configurations of the Encoder-Decoder models, then select
the best performing configuration on the validation set. We then
evaluate the validity of the model with the unseen instances of the
test set.

The evaluation is performed as follows: let M be the trained
model and T be the test set of BFPs (BFPsmall), we evaluate the
model M for each b f p = (abstractb ,abstractf) ∈ T . Specifically,
we feed the buggy code abstractb to the modelM , which will gener-
ate a single potential patch abstractp . We say that the model gener-
ated a successful fix for the code if and only ifabstractp = abstractf .
We report the raw count and percentage of successfully fixed BFPs
in the test set.

4 RESULTS
4.1 RQ: Is Neural Machine Translation a viable

approach to learn how to fix code?
When performing the hyperparameter search, we found that the
configuration which achieved the best results on the validation set
was the one with 1-layer bi-directional Encoder, 2-layer Attention
Decoder both with 256 units, embedding size of 512, and LSTM [13]
RNN cells. We trained theMsmall model for 50k epochs.

The model was able to successfully generate a fix for 538 out
of 5,835 cases (9.22% of the BFPs in the test set) by “translating”
the buggy code in the corresponding fixed code. While the number
of successful fixes might appear relatively small, it is important to
note that these fixes are generated with a single guess of the model
as opposed to previous approaches that generate many potential
patches. Moreover, it is worth noting that all BFPs in the test sets
are unique and have never been seen before by the model during the
training or validation steps. All the patches generated by the model
can be mapped to concrete source code by replacing the IDs in the
abstract code to the actual identifiers and literals values stored in
the mappingM .

5 THREATS TO VALIDITY
Construct validity. To have enough training data, we mined bug-
fixes in GitHub repositories rather than using curated bug-fix
datasets such as Defects4j [16] or IntroClass[22], useful but very
limited in size. To mitigate imprecisions in our datasets, we manu-
ally analyzed a sample of the extracted commits and verified that
they were related to bug-fixes.

Internal. It is possible that the performance of our model de-
pends on the hyperparameter configuration. We explain in Sec-
tion 2.3.3 how hyperparameter search has been performed.

External.We did not compare NMT models with state-of-the-
art techniques supporting automatic program repair since our main
goal was not to propose a novel approach for automated program
repair, but rather to execute a large-scale empirical study investi-
gating the suitability of NMT for generating patches. Additional
steps are needed to convert the methodology we adopted into an
end-to-end working tool, such as the automatic implementation of
the patch, the running of the test cases checking its suitability, etc.
This is a part of our future work agenda.

We only focused on Java programs. However, the learning pro-
cess is language-independent and the whole infrastructure can be
instantiated for different programming languages by replacing the
lexer, parser and AST differencing tools.

We only focused on small-sized methods. We reached this deci-
sion after analyzing the distribution of the extracted BFPs, balancing
the amount of training data available and the variability in sentence
length.

6 CONCLUSIONS
We presented an empirical investigation into the applicability of
NMT for the purpose of learning how to fix code, from real bug-
fixes. We first devised and detailed a process to mine, extract, and
abstract the source code of bug-fixes available in the wild, in order
to obtain method level examples of bug-fixes, which we call BFP.
Then, we set up, trained, and tuned NMT models to translate buggy
code into fixed code. We found that our model is able to fix a large
number of unique bug-fixes, accounting for 9% of the used BFPs.

This study constitutes a solid empirical foundation upon which
other researchers could build, and appropriately evaluate, program
repair techniques based on NMT.

REFERENCES
[1] Abdulkareem Alali, Huzefa H. Kagdi, and Jonathan I. Maletic. 2008. What’s a

Typical Commit? A Characterization of Open Source Software Repositories. In

835

ASE ’18, September 3–7, 2018, Montpellier, France M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, D. Poshyvanyk

The 16th IEEE International Conference on Program Comprehension, ICPC 2008,
Amsterdam, The Netherlands, June 10-13, 2008. 182–191.

[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting Accurate Method and Class Names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York,
NY, USA, 38–49.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine
Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473
(2014).

[4] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. 2017. Massive
Exploration of Neural Machine Translation Architectures. CoRR abs/1703.03906
(2017).

[5] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps. 2017. The
Care and Feeding of Wild-caught Mutants. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York,
NY, USA, 511–522. DOI:http://dx.doi.org/10.1145/3106237.3106280

[6] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014).

[7] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313–324.

[8] Michael Fischer, Martin Pinzger, and Harald C. Gall. 2003. Populating a Release
History Database from Version Control and Bug Tracking Systems. In 19th
International Conference on Software Maintenance (ICSM 2003), The Architecture
of Existing Systems, 22-26 September 2003, Amsterdam, The Netherlands. 23. DOI:
http://dx.doi.org/10.1109/ICSM.2003.1235403

[9] GitHub. 2010. GitHub Compare API. https://developer.github.com/v3/repos/
commits/#compare-two-commits. (2010).

[10] Ilya Grigorik. 2012. GitHub Archive. https://www.githubarchive.org. (2012).
[11] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep Code Search. In

Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 3, 2018.

[12] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016. 631–642.

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. DOI:http://dx.doi.org/10.1162/neco.
1997.9.8.1735

[14] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated
Atomicity-violation Fixing. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’11). ACM, New
York, NY, USA, 389–400.

[15] Magne Jorgensen and Martin Shepperd. 2007. A Systematic Review of Software
Development Cost Estimation Studies. IEEE Trans. Softw. Eng. 33, 1 (Jan. 2007),
33–53.

[16] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). ACM, New York, NY, USA, 437–440.

[17] Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent Continuous Translation
Models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics, Seattle, Washington,
USA, 1700–1709.

[18] Carsten Kolassa, Dirk Riehle, and Michel A. Salim. 2013. A Model of the Commit
Size Distribution of Open Source. In SOFSEM 2013: Theory and Practice of Com-
puter Science, Peter van Emde Boas, Frans C. A. Groen, Giuseppe F. Italiano, Jerzy
Nawrocki, and Harald Sack (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
52–66.

[19] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2017.
Bug localization with combination of deep learning and information retrieval. In
Proceedings of the 25th International Conference on Program Comprehension, ICPC
2017, Buenos Aires, Argentina, May 22-23, 2017. 218–229.

[20] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1.
213–224.

[21] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland. 3–13.

[22] C. Le Goues, N. Holtschulte, E. Smith, Y. Brun, P. Devanbu, S. Forrest, and W.
Weimer. 2015. The ManyBugs and IntroClass Benchmarks for Automated Repair
of C Programs. TSE 41, 12 (2015), 1236–1256.

[23] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Software
Eng. 38, 1 (2012), 54–72.

[24] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL ’16). ACM, New York, NY,
USA, 298–312.

[25] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. CoRR abs/1508.04025
(2015).

[26] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (2017), 1936–1964.

[27] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proceedings of
the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 772–781.

[28] Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Pragmatic
Bookshelf.

[29] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with
Statistical Language Models. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). ACM, New
York, NY, USA, 419–428.

[30] Robert C. seacord, Daniel Plakosh, and Grace A. Lewis. 2003. Modernizing
Legacy Systems: Software Technologies, Engineering Process and Business Practices.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[31] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
Cure Worse Than the Disease? Overfitting in Automated Program Repair. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). ACM, New York, NY, USA, 532–543.

[32] Victor Sobreira, Thomas Durieux, Fernanda Madeiral Delfim, Martin Monperrus,
and Marcelo de Almeida Maia. 2018. Dissection of a bug dataset: Anatomy of
395 patches from Defects4J. In 25th International Conference on Software Analysis,
Evolution and Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018.
130–140.

[33] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. CoRR abs/1409.3215 (2014).

[34] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Learning Bug-Fixing Patches in the Wild
via Neural Machine Translation - Online Appendix. https://sites.google.com/
view/learning-fixes. (2018).

[35] Danny van Bruggen. 2014. JavaParser. https://javaparser.org/about.html. (2014).
[36] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic

features for defect prediction. In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. 297–308.

[37] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. 364–374.

[38] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007.
How Long Will It Take to Fix This Bug?. In Proceedings of the Fourth International
Workshop on Mining Software Repositories (MSR ’07). IEEE Computer Society,
Washington, DC, USA, 1–.

[39] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, Singapore, September 3-7, 2016. 87–98.

[40] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better Test
Cases for Better Automated Program Repair. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York,
NY, USA, 831–841. DOI:http://dx.doi.org/10.1145/3106237.3106274

836

http://dx.doi.org/10.1145/3106237.3106280
http://dx.doi.org/10.1109/ICSM.2003.1235403
https://developer.github.com/v3/repos/commits/#compare-two-commits
https://developer.github.com/v3/repos/commits/#compare-two-commits
https://www.githubarchive.org
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://sites.google.com/view/learning-fixes
https://sites.google.com/view/learning-fixes
https://javaparser.org/about.html
http://dx.doi.org/10.1145/3106237.3106274

	Abstract
	1 Introduction
	2 Approach
	2.1 Bug-Fixes Mining
	2.2 Bug-Fix Pairs Analysis
	2.3 Learning Patches

	3 Experimental Design
	3.1 RQ: Is Neural Machine Translation a viable approach to learn how to fix code?

	4 Results
	4.1 RQ: Is Neural Machine Translation a viable approach to learn how to fix code?

	5 Threats to Validity
	6 Conclusions
	References

