
Landfill: an Open Dataset of Code Smells
with Public Evaluation

Fabio Palomba∗, Dario Di Nucci∗, Michele Tufano†

Gabriele Bavota‡, Rocco Oliveto§, Denys Poshyvanyk†, Andrea De Lucia∗
∗University of Salerno, Fisciano (SA), Italy — †The College of William and Mary, Williamsburg, VA, USA

‡Free University of Bozen-Bolzano, Bolzano, Italy — §University of Molise, Pesche (IS), Italy
fpalomba@unisa.it, ddinucci@unisa.it, mtufano@email.wm.edu

gabriele.bavota@unibz.it, rocco.oliveto@unimol.it, denys@cs.wm.edu, adelucia@unisa.it

Abstract—Code smells are symptoms of poor design and imple-
mentation choices that may hinder code comprehension and pos-
sibly increase change- and fault-proneness of source code. Several
techniques have been proposed in the literature for detecting code
smells. These techniques are generally evaluated by comparing
their accuracy on a set of detected candidate code smells against
a manually-produced oracle. Unfortunately, such comprehensive
sets of annotated code smells are not available in the literature
with only few exceptions. In this paper we contribute (i) a dataset
of 243 instances of five types of code smells identified from
20 open source software projects, (ii) a systematic procedure
for validating code smell datasets, (iii) LANDFILL, a Web-based
platform for sharing code smell datasets, and (iv) a set of APIs
for programmatically accessing LANDFILL’s contents. Anyone
can contribute to Landfill by (i) improving existing datasets
(e.g., adding missing instances of code smells, flagging possibly
incorrectly classified instances), and (ii) sharing and posting new
datasets. Landfill is available at www.sesa.unisa.it/landfill/, while
the video demonstrating its features in action is available at
http://www.sesa.unisa.it/tools/landfill.jsp.

I. INTRODUCTION

Code smells (or simply smells) have been defined by Fowler
as symptoms of poor design and implementation choices
[4]. These smells violate widely accepted principles of good
design, such as pursuing high cohesion and low coupling
of software modules. For example, a Blob is a large and
complex class that centralizes the behavior of a portion of
a system and only uses other classes as data holders. Blob
classes can rapidly grow out of control, making it harder and
harder for developers to understand them, to fix bugs, and to
add new features. Previous studies indicated that smells hinder
comprehension [1], and possibly increase change- and fault-
proneness [5], [6]. In summary, smells need to be carefully
detected and monitored and, whenever necessary, refactoring
actions should be planned for removing them.

For all these reasons, several techniques and tools have been
proposed in the literature to detect smells in source code [7],
[8], [9], [11]. The detection accuracy of a generic technique
T is generally evaluated in terms of precision and recall by
comparing the set of candidate smells detected by T against
a manually-produced oracle, reporting all instances of smells
present in one or more software systems. Unfortunately, to the
best of our knowledge, there are very few or no comprehensive

datasets of manually validated smells publicly available1, and
those available are often limited to specific smells (e.g., Blob
[12]). Also, there is no mechanism for researchers to contribute
to such datasets with other instances or different kinds of
smells, and to provide further evaluation. As a result, different
techniques are evaluated against different oracles, manually
defined by different people on different systems. Such a
strategy has a number of drawbacks:

• Oracle subjectiveness. The manual identification of
smells is naturally affected by a very high degree of
subjectiveness. Indeed, often people do not agree on the
presence of a smell instance [2]. Thus, even oracles built
for the same software system and for the same set of
smells are very likely to be different if built by different
people.

• Difficulties in comparing different techniques and gener-
alizing the results. Given the lack of publicly available
oracles, competitive techniques are usually compared on
a small oracle built in an ad-hoc fashion by the authors
for the sake of comparison. However, this not only poses
questions to the validity of the results, but also to their
generalizability.

• Very high effort required to build the oracle. Building
an oracle reporting instances of smells in a software
system implies manually inspecting all the classes of such
a system by looking for smell instances. Clearly, this
process is time-consuming and error-prone.

In this paper we (i) present LANDFILL, a Web-based plat-
form for sharing code smell datasets and validating them; (ii)
contribute to LANDFILL by providing the first dataset consist-
ing of 243 manually validated instances of five code smells,
namely Divergent Change, Shotgun Surgery, Parallel Inheri-
tance, Blob, and Feature Envy from 20 open source projects.
To the best of our knowledge, this constitutes the largest
collection of manually validated smells publicly available as
of today. Such a dataset has also been used to validate our
work on detection of code smells using historical information
[9], [10]; (iii) a methodology for manually creating code smell
oracles; and (iv) a set of APIs for programmatically accessing

1The available datasets are generally replication packages reporting smell
instances for few software systems (for instance, see [8]).

1



the platform’s contents.
Given LANDFILL and the methodology we propose, anyone

can contribute with the aim of increasing the quality and
quantity of the datasets by improving existing datasets (e.g.,
adding missing instances of code smells, marking potentially
incorrect instances, etc), and sharing new datasets.

Possible applications. There are several use cases that the
research community can take advantage of while using LAND-
FILL. The first, and most obvious, concerns the evaluation and
comparison of code smell detection tools. Such comparisons
would be cheaper to perform, and based on the oracles that
can be verified by several people, thus reducing the degree
of subjectiveness. The LANDFILL’s datasets can also be used
in empirical studies on smells. Indeed, often such studies are
performed on smell instances automatically identified by tools
[5], [6], thus possibly introducing errors in the data due to
the tool’s imprecision (e.g., detecting a smelly instance which
may not be affected by any code smell). The availability of the
LANDFILL’s datasets can move such studies to the new level,
where the code smell data are manually built and verified by
multiple annotators. Last, but not least, the platform can be
used in academic context for teaching refactorings that usually
start with identifying code smells.

Structure of the paper. Section II reports the process
we adopted to build the first dataset currently available in
LANDFILL, while Section III describes the support provided
by the LANDFILL web-platform to increase and improve the
available datasets. Finally, Section V concludes the paper.

II. BUILDING THE CODE SMELL DATASET

This section describes the process we adopted to contribute
the first smell dataset in LANDFILL. Our dataset includes
instances of the following five code smells:

• Divergent Change: this smell occurs when a class is
changed in different ways for different reasons. The
example reported by Fowler in his book on refactoring
[4] helps understanding this smell: If you look at a class
and say, “Well, I will have to change these three methods
every time I get a new database; I have to change
these four methods every time there is a new financial
instrument”, you likely have a situation in which two
classes are better than one [4]. Thus, this kind of smell
clearly triggers Extract Class refactoring opportunities.

• Shotgun Surgery: a class is affected by this smell when
a change to this class (i.e., to one of its fields/methods)
triggers many little changes to several other classes [4].
The presence of a Shotgun Surgery smell can be removed
through a Move Method/Field refactoring.

• Parallel Inheritance: this smell occurs when “every time
you make a subclass of one class, you also have to make a
subclass of another” [4]. This could be a symptom of de-
sign problems in the class hierarchy that can be solved by
redistributing responsibilities among the classes through
different refactoring operations, e.g., Extract Subclass.

• Blob: a class implementing several responsibilities, hav-
ing a large number of attributes, operations, and depen-

dencies with data classes [3]. The obvious way to remove
this smell is to use Extract Class refactoring.

• Feature Envy: as defined by Fowler [4], this smell occurs
when “a method is more interested in another class than
the one it is actually in”. For instance, there can be
a method that frequently invokes accessor methods of
another class to use its data. This smell can be removed
via Move Method refactoring operations.

A. Manual Validation Methodology

We looked for instances of these five smells in the 20 open
source projects listed in Table I. Besides listing the projects’
name, Table I also reports for each of them some size attributes
(i.e., number of classes and KLOC), the number of identified
instances for each smell, and the git snapshot-id of the system
version on which the oracle has been built. Concerning the
latter, we split the history of the twenty projects in two equal
parts, and build the oracle on a snapshot falling in the middle.
For instance, given the history of Apache Ant going from
January 2000 to January 2013, we selected a system snapshot s
from June 2006. This was done since some of the existing code
smells detection approaches exploit historical information (see
[9]). Thus, it is important for such techniques to have sufficient
history (the first half of each system in our case) from which
to extract the needed information.

For each of the twenty selected snapshots, one of the
authors manually identified instances of five considered smells.
Starting from the definition of the five smells reported in
literature [3], [4], the author manually analyzed the source
code of each snapshot, looking for instances of those smells.
Clearly, for smells characterized by how the code compo-
nents evolve over time (e.g., Parallel Inheritance), he also
analyzed the changes performed by developers on different
code components. This process took approximately four weeks
of work. Then, another author validated the produced oracle,
to verify that all affected code components identified by the
first author were correct. Only six of the smells identified by
the first author were classified as false positives by the second
author. An open discussion about these six instances has been
performed between the two authors, by looking again together
into the smell definitions, the source code, and the change-
history information at hand. After this discussion, two of the
six smells were classified as false positives (and thus removed
from the oracle).

Note that, while additional verification performed by the
second author does not ensure that the defined oracle is
complete (i.e., it includes all affected components), it increases
our degree of confidence in the correctness of the identified
smell instances and reduces the subjectiveness of our dataset.

B. Threats and Possible Imprecisions

As every manually built dataset, the oracles we produced
and included in LANDFILL may contain errors and omissions,
mainly due to the subjectiveness of discriminating smelly and
non-smelly instances. We alleviated this threat by involving
two people in building the oracle, thus reducing the level of

2



TABLE I
SNAPSHOTS CONSIDERED FOR THE SMELL DETECTION.

Project git Classes KLOC Divergent Shotgun Parallel Blob Feature
snapshot Change Surgery Inheritance Envy

Apache Ant da641025 846 173 0 0 7 8 8
Apache Tomcat 398ca7ee 1,284 336 5 1 9 5 3
jEdit feb608el 316 101 4 1 3 5 10
Android API (framework-opt-telephony) b3a03455 223 75 0 0 0 13 0
Android API (frameworks-base) b4ff35df 2,766 770 3 1 3 18 17
Android API (frameworks-support) 0f6f72e1 246 59 1 1 0 5 0
Android API (sdk) 6feca9ac 268 54 1 0 9 10 3
Android API (tool-base) cfebaa9b 532 119 0 0 0 0 0
Apache Commons Lang 4af8bf41 233 76 1 0 6 3 1
Apache Cassandra 4f9e551 826 117 3 0 3 2 28
Apache Commons Codec c6c8ae7a 103 23 0 0 0 1 0
Apache Derby 562a9252 1,746 166 0 0 0 9 0
Eclipse Core 0eb04df7 1,190 162 1 1 8 4 3
Apache James Mime4j f4ad2176 250 280 1 0 0 0 9
Google Guava e8959ed0 153 16 0 0 0 1 2
Aardvark ff98d508 103 25 0 1 0 1 0
And Engine f25236e4 596 20 0 0 0 0 1
Apache Commons IO c8cb451c 108 27 1 0 1 2 1
Apache Commons Logging d821ed3e 61 23 2 0 2 2 0
Mongo DB b67c0c43 22 25 1 0 0 3 0

Blob
Blob
Parallel Inheritance
Parallel Inheritance
Divergent Change

org.data.User
org.action.Send
org.data.User org.data.Student
org.ui.UserForm org.ui.StudentForm
org.action.Manager

Fig. 1. Example of csv file accepted by LANDFILL to import a dataset.

subjectiveness. However, we cannot exclude that such manual
analysis could have potentially missed some smells, or else
identified some false positives. We also rely on the contribu-
tions from the research community to help us improving the
quality of the dataset via the LANDFILL platform.

III. EVOLVING THE DATASET

This section describes how the LANDFILL platform can be
used to create, share, and improve code smell datasets.

A. Creating a New Dataset

LANDFILL allows anyone to create a code smell dataset.
After registering, a user can upload a dataset to LANDFILL
following two simple steps:

1) Create the dataset. The user provides (i) the name of the
dataset, (ii) the list of authors, (iii) a description of the
process adopted to create it. Note that the process adopted
by the authors could be totally different from the one we
adopted in the building of the first dataset we contributed
to LANDFILL. The goal of this description is to provide
the users of the dataset with clear information on how
the dataset has been built, catching possible pitfalls in
the adopted process.

2) Dataset upload. After having created the dataset instance,
the user can add new systems to it by providing (i)
the name of the system, (ii) the snapshot for which the
user wants to insert smell instances, (iii) an archive file
containing the source code of the smells of the system
and (iv) an csv file having a specific format in which
she can specify the kind of code smells considered in the
dataset (e.g., Blob and Feature Envy). In particular:
• each line of the csv file represents a smell instance;

• the first column of each line specifies the smell kind
the instance refers to (e.g., Blob);

• columns from #2 to #n in each line represent the n−1
code components involved in that specific instance of
code smell (e.g., a single class in column #2 following
the “Blob” string in column #1 indicates the class
affected by the Blob smell).

An example of csv file accepted by LANDFILL is shown
in Fig. 1. Lines reporting instances of Blob and Divergent
Change smells just list the class affected by these smells
(e.g.,org.data.User is a Blob class). Instead, since
the Parallel Inheritance smell affects pairs of classes
(see the definition in Section II), each of its instances
reports the affected pair of classes. Note that, depending
on the smell kind, an affected code component can also be
something different from a class (e.g., in case of Feature
Envy the affected code component is a method).

B. Improving Existing Datasets
Any registered user can contribute to LANDFILL by improv-

ing the quality of existing datasets. Fig. 2 depicts the page used
by LANDFILL to visualize an existing dataset. Given a dataset
reporting the instances of a smell type T on a software system
S, a registered user can:

1) Add a missing instance of T in S. This can easily be done
by pushing the button on top of the screen (see Fig. 2)
and inserting the complete identifier of the smelly code
component (e.g., org.Landfill.AddMissingInstance).

2) Vote on the smell instances reported in the dataset. This
is possible thanks to the like/dislike buttons appearing
when moving the mouse over a smell instance (see left
side of Fig. 2). On the one side, positive scores are useful
to easily identify the smell instances for which there is
a high agreement among the LANDFILL’s users. On the
other side, negative scores are used to identify “likely
wrong” instances. To facilitate the analysis of classes and
identifying the possible presence of smells, a user can
explore class’s source code by clicking on its name. Users
can also leave comments to the dataset, for example to

3



Fig. 2. LANDFILL: Visualizing an existing dataset.

explain the rationale behind a positive/negative evaluation
they gave to a smell instance. LANDFILL visualizes the
percentage of positive ratings obtained by each dataset
as one of its properties. In this way, it is easy for
researchers interested in reusing code smells datasets to
quickly identify the most ”reliable” ones.

IV. PROGRAMMATIC ACCESS TO THE PLATFORM

LANDFILL provides a set of APIs that support the pro-
grammatic access to its datasets. In particular, it is possible
to (i) retrieve the list of all datasets available in the platform,
obtaining for each of them the list of authors, the name of the
dataset, the considered smells, and the percentage of positive
ratings it has; (ii) get the list of code smell instances in a
specific system (belonging to a dataset and a specific type,e.g.,
Blob classes); (iii) download the source code of the classes of
interest; (iv) send positive/negative ratings for specific smell
instances. The complete APIs specification is available at
http://www.sesa.unisa.it/tools/landfill.jsp.

V. CONCLUSION

We presented LANDFILL, a web-based platform aimed at
promoting the collection and sharing of code smell datasets
in the software engineering and MSR research community in
particular. We contributed to LANDFILL with the first dataset
containing 243 instances of five smell types from 20 open
source projects. Such a dataset has been already used to
validate our history-based smell detection approach [9].

LANDFILL is already available to everyone willing to con-
tribute to it. In the future, we are planning on extending our
platform to support other types of datasets, and also to host the
results of experiments performed using LANDFILL’s datasets.

REFERENCES

[1] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, Blob and Spaghetti Code, on
program comprehension,” in 15th European Conference on Software
Maintenance and Reengineering, CSMR 2011, 1-4 March 2011, Old-
enburg, Germany. IEEE Computer Society, 2011, pp. 181–190.

[2] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia,
“Methodbook: Recommending move method refactorings via relational
topic models,” Software Engineering, IEEE Transactions on, vol. 40,
no. 7, pp. 671–694, July 2014.

[3] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and
T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis, 1st ed. John Wiley and Sons, 1998.

[4] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[5] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory study
of the impact of code smells on software change-proneness,” in 16th
Working Conference on Reverse Engineering, WCRE 2009, 13-16 Oc-
tober 2009, Lille, France. IEEE Computer Society, 2009, pp. 75–84.

[6] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[7] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in 20th International Conference on Software Mainte-
nance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA. IEEE
Computer Society, 2004, pp. 350–359.

[8] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur, “DECOR:
a method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2010.

[9] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Mining version histories for detecting code smells,”
IEEE Transactions on Software Engineering (to appear).

[10] ——, “Detecting bad smells in source code using change history infor-
mation,” in Automated Software Engineering (ASE), 2013 IEEE/ACM
28th International Conference on, Nov 2013, pp. 268–278.

[11] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[12] S. Vaucher, F. Khomh, N. Moha, and Y. Guéhéneuc, “Tracking design
smells: Lessons from a study of god classes,” in 16th Working Confer-
ence on Reverse Engineering, WCRE 2009, 13-16 October 2009, Lille,
France. IEEE Computer Society, 2009, pp. 145–154.

4


