
ARIES: An Eclipse plug-in to Support
Extract Class Refactoring

Gabriele Bavota
University of Sannio

gbavota@unisannio.it

Andrea De Lucia
University of Salerno

adelucia@unisa.it

Andrian Marcus
Wayne State University
amarcus@wayne.edu

Rocco Oliveto
University of Molise

rocco.oliveto@unimol.it

Fabio Palomba
University of Salerno

fabio.palomba.89@gmail.com

Michele Tufano
University of Salerno

tufanomichele89@gmail.com

ABSTRACT
During Object-Oriented development, developers try to de-
fine classes having (i) strongly related responsibilities, i.e.,
high cohesion, and (ii) limited number of dependencies with
other classes, i.e., low coupling [1]. Unfortunately, due to
strict deadlines, programmers do not always have sufficient
time to make sure that the resulting source code conforms
to such a development laws [8].

In particular, during software evolution the internal struc-
ture of the system undergoes continuous modifications that
makes the source code more complex and drifts away from
its original design. Classes grow rapidly because program-
mers often add a responsibility to a class thinking that it
is not required to include it in a separate class. However,
when the added responsibility grows and breeds, the class
becomes too complex and its quality deteriorates [8]. A class
having more than one responsibility has generally low cohe-
sion and high coupling. Several empirical studies provided
evidence that high levels of coupling and lack of cohesion
are generally associated with lower productivity, greater re-
work, and more significant design efforts for developers [6],
[10], [11], [12], [13]. In addition, classes with lower cohesion
and/or higher coupling have been shown to correlate with
higher defect rates [9], [14], [15].

Classes with unrelated methods often need to be restruc-
tured by distributing some of their responsibilities to new
classes, thus reducing their complexity and improving their
cohesion. The research domain that addresses this problem
is referred to as refactoring [8]. In particular, Extract Class
Refactoring allows to split classes with many responsibilities
into different classes. Moreover, it is a widely used technique
to address the Blob antipattern [8], namely a large and com-
plex class, with generally low cohesion, that centralize the
behavior of a portion of a system and only use other classes
as data holders. It is worth noting that performing Extract
Class Refactoring operations manually might be very diffi-
cult, due to the high complexity of some Blobs. For this
reason, several approaches and tools have been proposed
to support this kind of refactoring. Bavota et. al [2] pro-
posed an approach based on graph theory that is able to split
a class with low cohesion into two classes having a higher
cohesion, using a MaxFlow-MinCut algorithm. An impor-
tant limitation of this approach is that often classes need to
be split in more than two classes. Such a problem can be
mitigated using partitioning or hierarchical clustering algo-
rithms. However, such algorithms suffer of important lim-

itations as well. The former requires as input the number
of clusters, i.e., the number of classes to be extracted, while
the latter requires the definition of a threshold to cut the
dendogram. Unfortunately, no heuristics have been derived
to suggest good default values for all these parameters. In-
deed, in the tool JDeodorant [7], which uses a hierarchical
clustering algorithm to support Extract Class Refactoring,
the authors tried to mitigate such an issue by proposing dif-
ferent refactoring opportunities that can be obtained using
various thresholds to cut the dendogram. However, such
an approach requires an additional effort by the software
engineer who has to analyze different solutions in order to
identify the one that provides the most adequate division of
responsibilities.

We tried to mitigated such deficiencies by defining an
approach able to suggest a suitable decomposition of the
original class by also identifying the appropriate number of
classes to extract [3, 4]. Given a class to be refactored, the
approach calculates a measure of cohesion between all the
possible pairs of methods in the class. Such a measure cap-
tures relationships between methods that impact class cohe-
sion (e.g., attribute references, method calls, and semantic
content). Then, a weighted graph is built where each node
represents a method and the weight of an edge that connects
two nodes is given by the cohesion of the two methods. The
higher the cohesion between two methods the higher the like-
lihood that the methods should be in the same class. Thus,
a cohesion threshold is applied to cut all the edges having
cohesion lower than the threshold in order to reduce spuri-
ous relationships between methods. The approach defines
chains of strongly related methods exploiting the transitive
closure of the filtered graph. The extracted chains are then
refined by merging trivial chains (i.e., chains with few meth-
ods) with non trivial chains. Exploiting the extracted chains
of methods it is possible to create new classes - one for each
chain - having higher cohesion than the original class.

In this paper, we present the implementation of the pro-
posed Extract Class Refactoring method in ARIES (Au-
tomated Refactoring In EclipSe) [5], a plug-in to support
refactoring operations in Eclipse. ARIES provides support
for Extract Class Refactoring through a three steps wizard.

In the first step, shown in figure 1, the tool supports the
software engineer in the identification of candidate Blobs
through the computing of three quality metrics, namely
LCOM5 [6], C3 [9] and MPC [16]. Thus, ARIES does not
compute an overall quality of the classes, but it considers



Threshold

Metrics' values

Threshold Candidate Blobs

Figure 1: ARIES: Identification of candidate Blobs.

only cohesion and coupling as the main indicators of class
quality in this context. Hence, Blobs are usually outliers or
classes having a quality much lower than the average quality
of the system under analysis [9]. The identification of Blobs
in ARIES is based on such a conjecture. In the second step of
the wizard, the software engineer has the possibility to fur-
ther analyze a candidate Blob and get insights on the differ-
ent responsibilities implemented by analyzing its topic map,
represented as the five most frequent terms in a class (the
terms present in the highest number of methods). For this
reason, the topic map is represented by a pentagon where
each vertex represents one of the main topics. Once a class
that needs to be refactored is identified, the software engi-
neer activates the last step of the wizard (shown in figure 2)
to obtain a possible restructuring of the class under analysis.
ARIES reports for each class that should be extracted from
the Blob the following information: (i) its topic map; (ii)
the set of methods composing it; and (ii) a text field where
the developer can assign a name to the class. The tool also
allows the developer to customize the proposed refactoring
moving the methods between the extracted classes.

In addition, ARIES offers the software engineer on-demand
analysis of the quality improvement obtained by refactoring
the Blob, by comparing various measures of the new classes
with the measures of the Blob. When the developer ends
the analysis, the extraction process begins. ARIES will gen-
erate the new classes making sure that the changes made
by the refactoring do not introduce any syntactic error. A
video of the tool is available on Youtube1.

REFERENCES
[1] W. Stevens, G. Myers, and L. Constantine. Structured
design. IBM Systems Journal, vol. 13, no. 2, pp. 115139,
1974.

[2] G. Bavota, A. De Lucia, and R. Oliveto. Identifying
extract class refactoring opportunities using structural and
semantic cohesion measures. JSS, 84:397–414, 2011.

[3] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto. A
two-step technique for extract class refactoring. ASE, 151–
154, 2010.

[4] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto. Au-
tomating Extract Class Refactoring: an Improved Method
and its Evaluation. Empirical Software Engineering (EMSE)
(2013) To appear.

1http://www.youtube.com/watch?v=csfNhgJlhH8

First class 
extracted

Topic map original class Parameters' sliders

Second class 
extracted

Figure 2: ARIES: Extract Class refactoring.

[5] G. Bavota, A. D. Lucia, A. Marcus, R. Oliveto and
F. Palomba. Supporting Extract Class Refactoring in Eclipse:
The ARIES Project. ICSE, 1419–1422, 2012.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE TSE, 20(6):476–493, 1994.

[7] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou.
JDeodorant: identification and application of extract class
refactorings. ICSE, 1037–1039, 2011.

[8] M. Fowler. Refactoring: improving the design of existing
code. Addison-Wesley, 1999.

[9] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the
conceptual cohesion of classes for fault prediction in object-
oriented systems. IEEE TSE, 34(2):287–300, 2008.

[10] V. R. Basili, L. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
TSE, vol. 22, no. 10, pp. 751–761, 1995

[11] A. B. Binkley and S. R. Schach. Validation of the cou-
pling dependency metric as a predictor of run-time failures
and maintenance measures. ICSE, 452–455, 1998

[12] L. C. Briand, J. Wüst, and H. Lounis. Using coupling
measurement for impact analysis in object-oriented systems.
ICSM, 475–482, 1999

[13] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lou-
nis. Investigating quality factors in object-oriented designs:
an industrial case study. ICSE, 345–354, 1999

[14] T. Gyimóthy, R. Ferenc, and I. Siket. Empirical valida-
tion of object-oriented metrics on open source software for
fault prediction. IEEE TSE, vol. 31, no. 10, pp. 897910,
2005

[15] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and
N. Chrisochoides. Modelling class cohesion as mixtures of
latent topics. ICSM, 233–242

[16] W. Li and S. Henry. Maintenance metrics for object
oriented paradigm. Software Metrics Symposium, 52–60


